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Umbilical Cord Tissue Offers the Greatest Number of
Harvestable Mesenchymal Stem Cells for Research
and Clinical Application: A Literature Review of

Different Harvest Sites

C. Thomas Vangsness Jr., M.D., Hal Sternberg, M.D., and Liam Harris, B.S.
Purpose: Recent years have seen dramatic increases in the techniques used to harvest and isolate human mesenchymal
stem cells. As the potential therapeutic aspects of these cells further develop, informative data on the differences in yields
between tissue harvest sites and methods will become increasingly valuable. We collected and compared data on cell yields
from multiple tissue harvest sites to provide insight into the varying levels of mesenchymal stem cells by tissue and offer
primary and alternative tissue types for harvest and clinical application. Methods: The PubMed and Medline databases
were searched for articles relating to the harvest, isolation, and quantification of human mesenchymal stem cells. Selected
articles were analyzed for relevant data, which were categorized according to tissue site and, if possible, standardized to
facilitate comparison between sites. Results: Human mesenchymal stem cell levels in tissue varied widely according to
tissue site and harvest method. Yields for adipose tissue ranged from 4,737 cells/mL of tissue to 1,550,000 cells/mL of tissue.
Yields for bone marrow ranged from 1 to 30 cells/mL to 317,400 cells/mL. Yields for umbilical cord tissue ranged from
10,000 cells/mL to 4,700,000 cells/cm of umbilical cord. Secondary tissue harvest sites such as placental tissue and synovium
yielded results ranging from 1,000 cells/mL to 30,000 cells/mL. Conclusions: Variations in allogeneic mesenchymal stem
cell harvest levels from human tissues reflect the evolving nature of the field, patient demographic characteristics, and dif-
ferences in harvest and isolation techniques. At present, Wharton’s jelly tissue yields the highest concentration of allogeneic
mesenchymal stem cells whereas adipose tissue yields the highest levels of autologousmesenchymal stem cells permilliliter of
tissue. Clinical Relevance: This comparison of stem cell levels from the literature offers a primer and guide for harvesting
mesenchymal stem cells. Larger mesenchymal stem cell yields are more desirable for research and clinical application.
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the therapeutic application of MSCs in humans. As evi-
dence of the benefits of these procedures grows, more
surgeons will look to provide cellular treatments to their
patients. At present, there are 502 active human clinical
trials involving the therapeutic use of MSCs,12 a number
that is only expected to increase.
With these innovations have come new de-

velopments for the harvesting and characterization of
MSCs. Advances over the past several years have yiel-
ded promising avenues for collecting MSCs for potential
surgical applications. As the technology for these ap-
plications develops, a direct comparison of the qualities,
tissue harvest sites, and yields for different sources of
MSCs will become valuable to treating surgeons.
To this end, we reviewed the established literature

on MSC sources from different tissue harvest sites for
humanMSCs. The purpose of this study was to provide a
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Fig 1. Comparative histological slides of various Human
mesenchymal stem cell populations from various tissues. (A)
Adipose tissue mesenchymal stem cell shown in inverted
phase microscopy (magnification unknown; reprinted with
permission56). (B) Bone marrow mesenchymal stem cells.
(�10 magnification; reprinted with permission57). (C) Umbil-
ical cord tissue mesenchymal stem cells shown in inverted
phase (�200 magnification; reprinted with permission58). (D)
Synovial tissuemesenchymal stem cells shown in alizarin red S
stain (�200 magnification; reprinted with permission59).
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consensus of opinion for the best site and tissue type for
MSC harvest through review of established literature.
We hypothesized that, despite wide variations in
yields between anatomic sites and harvest techniques,
placental tissue yields the greatest, most easily accessible
quantity of MSCs for research or clinical application.

Methods

Search
For this study, the PubMed and Medline databases

were used to conduct a comprehensive search of jour-
nal articles related to the qualities, classes, and harvest
of human MSCs (Fig 1). The search terms used were as
follows: placental stem cell, adipose stem cell, bone
marrow mesenchymal stem cell, umbilical cord
mesenchymal stem cell, amniotic stem cell, chorionic
stem cell, mesenchymal stem cell isolation, mesen-
chymal stem cell harvest, progenitor cell harvest, and
mesenchymal stem cell quantification. These searched
terms yielded 25,063 results. Among these results, ar-
ticles without the keywords “human” and “harvest”
were excluded, yielding 1,075 articles. These articles
were evaluated for quality and relevance to this study,
after which 161 articles were selected for more detailed
analysis. The bibliographies of these 161 articles were
also searched for relevant publications, ultimately
yielding 29 articles for review. In addition, the
ClinicalTrials.gov database was reviewed for relevant
clinical trials involving the use of human MSCs.

Eligibility Criteria and Data Extraction
This search was limited to articles published in the

English language up to December 31, 2014. Relevant
articles for this survey were studied, and their bibliog-
raphies were searched and evaluated for relevant data
concerning MSC harvest. Articles were analyzed for
information on different classes of MSCs, cell surface
markers, and tissue harvest sites, as well as quantifica-
tion of cells at these specific harvest sites, with relevant
articles selected for this review based on inclusion of
MSC harvest data. These data were organized by
different harvest sites and tissue types to be presented
in a clear and direct format.

Results
The results of this literature review yielded 4 major

tissue sources of MSCs as defined by tissue localization,
as well as multiple subclasses. These broad classes were
placental tissue derived, adipose derived, bone marrow
derived, and umbilical cord derived. The synovial
membrane, peripheral blood, umbilical cord blood,
periosteum, muscle, and trabecular bone have been
studied as sources of MSCs, but comparative data are
much less common. The results of this review are
summarized in Table 1.
Adipose
Adipose tissue harvest by reviewed studies relied

primarily on a lipoaspiration technique to isolate

http://ClinicalTrials.gov


Table 1. Reported Mesenchymal Stem Cell Yields From Various Harvest Sites

Authors Tissue Type Tissue Site Reported Level
Converted Level: Cells per

Milliliter of Tissue

Raposio et al.44 Adipose Unknown 5.0 � 105 cells/80 mL adipose tissue 6,250 cells/mL
Minonzio et al.45 Adipose Unknown 587,753 cells/75.3 g adipose tissue 7,395 cells/mL
Oedayrajsingh-

Varma et al.46
Adipose Abdomen, hip, thigh 6.3 � 1.8% of harvested adipose SVF

(mean � SEM)
18,334-61,398 cells/mL

von Heimburg
et al.47

Adipose Unknown 80,000 to 350,000 cells/g adipose
tissue

75,800-331,625 cells/mL

Policha et al.48 Adipose Abdomen 259,345 � 15,441 cells/g adipose
tissue (mean � SEM)

245,729 � 14,630 cells/mL

Gruber et al.49 Adipose Abdomen 471,000 cells/mL of adipose tissue 471,000 cells/mL
Aust et al.50 Adipose Abdomen 404,000 � 206,000 cells/mL

lipoaspirate (mean � SD)
404,000 cells/mL

Mitchell et al.29 Adipose Unknown 308,849 nucleated cells/mL of
lipoaspirate

19,303 cells/mL

Yoshimura et al.14 Adipose Unknown 1.31 � 0.5 � 109 and 1.55 � 0.79 �
109/L adipose tissue
(mean � SEM)

1,310,000 cells/mL and
1,550,000 cells/mL

Zhu et al.36 Adipose Unknown 500,000 cells/1.5 mL of adipose tissue 333,333 cells/mL
Yu et al.51 Adipose Unknown 375 � 142 � 103/mL of lipoaspirate

(mean � SD)
375,000 cells/mL

Strem et al.13 Adipose Unknown 5,000/g of adipose tissue 4,737.5 cells/mL
De Ugarte et al.16 Adipose Unknown 2 � 105/g of adipose 189,500 cells/mL
De Ugarte et al.16 Bone marrow Hip 3 � 105/g 317,400 cells/mL
Wexler et al.33 Bone marrow Unknown 1 in 3.4 � 104 nucleated cells
Hernigou et al.32 Bone marrow Anterior iliac crest 612 � 134 cells/mL of bone marrow

(mean � SD)
612 cells/mL

Hernigou et al.52 Bone marrow Iliac crest 84 to 7,581 cells/mL 84 to 7,581 cells/mL
Pierini et al.34 Bone marrow Posterior iliac crest 269.3 � 185.1/106 mononuclear cells

(mean � SD)
3,606.94 cells/mL

Pierini et al.34 Bone marrow Anterior iliac crest 166 � 133.8/106 mononuclear cells
(mean � SD)

1,942.72 cells/mL

de Girolamo et al.6 Bone marrow Iliac crest 0.04% of cells
de Girolamo et al.6 Bone marrow Subchondral knee 0.02% of cells
Sakaguchi et al.15 Bone marrow Tibia 1:105 to 1:106 nucleated cells 1-30 cells/mL
Sakaguchi et al.21 Trabecular bone Tibia Approximately 1:103 to 1:105

nucleated cells
1,000-100,000 cells/g

Sakaguchi et al.21 Periosteum Tibia Approximately 1:102 nucleated cells 30,000 cells/g
Sakaguchi et al.21 Synovium Medial knee Approximately 1:102 nucleated cells 30,000 cells/g
Sakaguchi et al.21 Muscle Semitendinosus

muscle
Approximately 1:102 nucleated cells 20,000 cells/g

Bongso and
Fong18

UC Wharton’s jelly 4.7 � 106/cm of UC

Tsagias et al.53 UC Wharton’s Jelly 0.65 � 106/cm of cord
Chatzistamatiou

et al.54
UC Wharton’s Jelly 1.75 � 105 � 0.94 � 105 � 3.02 �

105 � 0.66 � 105 cells/cm
(mean � SD)

Karahuseyinoglu
et al.17

UC Wharton’s jelly 10 � 103/cm of UC

Weiss et al.35 UC Wharton’s jelly 1.5 � 104/cm UC
Fu et al.55 UC Wharton’s jelly 50 � 103/cm of UC
Lu et al.21 UC Cord blood Approximately 1:103 to 1:104

nucleated cells
Kim et al.18 UC Wharton’s Jelly 6.4 � 3.2 � 104 /g wet tissue

(mean � SEM)
1,000 cells/mL

Kim et al.19 Placental tissue Chorion 4.5 � 2.7 � 104/g of wet tissue
Zvaifler et al.20 Blood Peripheral Approximately 1:103 to 1:104

nucleated cells
1-40 cells/mL

NOTE. Values were reported in mL when reported in mL in the literature, or when accepted densities were available for conversion to mL.
Values reported in grams of cm of tissue which could not be converted were reported in their original units.
SVF, stromal vascular fraction; UC, umbilical cord.
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HARVESTABLE MESENCHYMAL STEM CELLS 1839
adipose tissue, and unprocessed lipoaspirate and simple
adipose tissue were evaluated as equivalent substances.
Levels for adipose-derived MSCs ranged from 4,737.5
MSCs/mL of lipoaspirate13 to 1,550,000 MSCs/mL of
lipoaspirate14 (Table 1, Fig 1).

Bone Marrow
Bone marrow tissue harvest was primarily conducted

through repeated aspirations through large-bore nee-
dles, ranging from 15- to 18-gauge sizes.15 Levels for
bone marrowederived MSCs ranged from 1 to 30
MSCs/mL15 to 317,400 cells/mL16 (Table 1, Fig 1).

Umbilical Cord and Placental Tissue
Placental tissuee and umbilical cordederived MSCs

proved unique in their diverse harvest and tissue-specific
harvest sites. Tissue cell levels for Wharton’s jelly (um-
bilical cord connective tissue) ranged from 10,000 MSCs/
mL of umbilical cord17 to 4,700,000 MSCs/cm of umbil-
ical cord.18 Chorionic tissue cell levels were reported to be
45,000 MSCs/g of wet tissue (Fig 1).19

Peripheral Tissue
Peripheral blood, which was collected through pe-

ripheral blood draw and centrifugation, was reported to
have MSC levels of 1 to 40 cells/mL.20 Muscle tissue
was harvested from the semitendinosus tendon, which
was collected with a tendon stripper.21 Similarly, peri-
osteum tissue was collected from the tibial insertion of
the same harvested semitendinosus tendon.21 Synovial
tissue was harvested during arthroscopic surgery from
the medial joint capsule of the knee using a pituitary
rongeur.21

Discussion
The advancement of stem cell transplant techniques

over recent years has made the practical acquisition of
these cells increasingly worthwhile for the purpose of
reconstructive surgery. Autologous sources represent
the most current, cost-efficient, and least controversial
option to acquire and transplant MSCs in the clinical
setting. Physicians and researchers exploring this
emerging field will require resources concisely
explaining the most efficient sites for MSC harvest, as
well as the levels of cells available in different tissues.
Determining the best and most consistent tissue source
of human MSCs, as well as the cell levels typically
harvested from related sites, offers a valuable resource
for future clinical studies.
Given the diverse array of units used to report cell

harvest levels among selected studies, values were
converted to a standard measurement to allow direct
comparison between studies and tissues. For adipose
values, a common value for the density of adipose
tissue was selected from previous studies as 0.9475
g/mL22 to convert values from grams to milliliters. The
standard density for bone marrow used for conversions
was determined to be 1.058 g/mL.23 Values from
studies that did not include volume or mass data for
bone marrow harvest could not be reported in millili-
ters and, consequently, were reported with MSCs as a
percentage of total nucleated cells. Similar concerns
arose in the reporting of umbilical cord tissue. Values
from studies that did not include mass or volume data
were instead recorded by length of cord and could not
be converted.

Autograft Tissue and Minimal Manipulation
Comparisons of yields between placental and autograft

tissue invite clarification of the practical difference be-
tween autograph and allograph transplantation, as well
as minimally manipulated tissues. Allograft tissue rarely
presents with immune complications after trans-
plantation. The lack of the human leukocyte antigeneA
surface antigen confers an immune-privileged nature to
placental tissue, allowing for comparable use of the 2
tissues without immune-modifying therapy.24 Conse-
quently, for the purposes of clinical use and this review,
allograft placental tissue is comparable with autograft
cells.
According to US Food and Drug Administration (FDA)

regulations, only cellular products classified as “361 tis-
sue” may be exempt from premarket review and regu-
lation. Classification as 361 tissue requires cells to be
“minimally manipulated,” a criterion that excludes
many common techniques used to harvest, isolate, and
purifyMSCs today. It should be noted that adipose tissue
currently harvested for MSCs requires multistep pro-
cessing, including enzymatic digestion, purification, and
expansion in culture, which is considered more than
“minimal manipulation,” thereby excluding them from
361 cellular tissue classification by the FDA.25 However,
recent procedural and technologic advances have
demonstrated efficient, non-enzymatic purification of
human MSCs from lipoaspirate.26 Further, recent
studies have shown mechanically purified adipose-
derived MSCs demonstrate greater pluripotent response
compared to enzymatically isolated adipose stem cells.27

Given recent FDA approval for marketing of this system
and subsequent “361 cellular tissue” classification, the
field of adipose-derived stem cells and their clinical
application may greatly expand in the coming years. In
addition, a 2013 update by the FDA Tissue Reference
Group clarified that bone marrow MSCs, when
expanded in culture, did not fall under the classification
of 361 cells.28 Consequently, the advancement of the
field and therapeutic application of MSCs will likely rely
on the ability to harvest cells in quantities suitable for
implantation without digestion and expansion. A
detailed understanding of the anatomic sites and tissue
types yielding the highest levels and concentrations of
cells by volume will prove crucial to these initial steps.



1840 C. T. VANGSNESS ET AL.
Technologic developments to further purify MSCs from
harvest tissue without the use of expansion in culture
will allow researchers to rapidly expand both the aca-
demic and clinical applications of these cells. Indeed,
novel “non-manipulating” measures to efficiently
extract MSCs from adipose tissue are currently being
explored,29 which will likely allow for the circumven-
tion of 361 regulations for clinical study and application.
Our results indicate significant differences in the

quantity and consistency of stem cell levels between
adipose, bone marrow, and placental tissues. Studies
performing harvest and isolation of MSCs from adipose
tissue consistently showed higher cell yields than
with MSCs from bone marrow and placental tissue.
Furthermore, variations in harvest levels between
different studies of the same tissue indicate notable
differences. The highest reported yield for studies on
adipose tissue showed an over 300-fold increase in cell
harvest over the lowest reported values.13,14 Bone
marrow studies showed an over 1,000-fold increase
between the highest and lowest reported yields.15,16

This large variation must be noted.

Quantification of Cells
Pertinent to the analysis of cell yields from various

tissues is the methods by which yields were quantified.
Cellular quantification techniques proved relatively
homogeneous across both tissue subtype and anatomic
site. The primary method of cell harvest quantification
was a limited-dilution colony-forming unit assay. Tis-
sues were harvested and homogenized by serial
centrifugation and suspension in liquid media accord-
ing to techniques and concentrations specific to each
anatomic site. Purification of MSCs was performed by
serial replacement of cellular growth media and sub-
sequent disposal of nonadherent cells using the innate
cellular adhesion properties of MSCs.30 Rough cell
densities in liquid media were determined using cell
counters and hemocytometers, after which cells were
plated at densities ranging from 103 cells per plate20 to
106 cells per plate.31 After growth of fibroblast colonies,
cells were stained and counted using light microscopy.
Studies conducted by Mitchell et al.,31 Wexler et al.,32

Hernigou et al.,33 Pierini et al.,34 Sakaguchi et al.,21

Weiss et al.,35 and Lu et al.22 all used the limited-
dilution fibroblast colony-forming unit assay. Among
these studies, notable variables included the time
allowed for colony growth, which varied from 7 to 14
days; the number of cells determined to define a “col-
ony,” which ranged from 20 cells per colony31 to 50
cells per colony33; and the number of serial dilutions
conducted beforehand to purify the cells. Because the
anatomic tissue source of each cell type necessitates
different methods of initial preparation, comparison of
homogenization and serial dilution is impractical, and
this variable should be noted. Alternative quantification
methods used serial dilution and cellular adherence,
followed immediately by cell quantification using cell
counters. This technique was used by Zhu et al.,36 De
Ugarte et al.,16 Yoshimura et al.,14 and Zvaifler et al.20

Finally, de Girolamo et al.6 used flow cytometry to
quantify cellular harvest levels, incubating cells with
commercial anti-CD45 and anti-CD271 antibodies after
serial dilution and purification using cellular adherence.
Differences in quantification are likely to yield signifi-
cant variations in harvest levels. As shown by Cuthbert
et al.,37 Jones et al.,38 and Tormin et al.,39 roughly 1 in
17 CD271-positive cells yield a fibroblast colony during
colony-forming unit assay. Although these potential
differences did not influence our conclusions, in the
future, consideration must be given to the method of
cellular quantification.

Variations in Yields
Differences in yields among tissue sites are likely a

result of 2 principal factors: harvest techniques and
patient demographic characteristics. Adipose tissuee
derived MSC yields have been shown to be only
minimally affected by age differences among patients.40

Given the multistep process of harvesting and isolating
adipose tissueederived MSCs, differences in yields may
be principally a consequence of variations in harvest
techniques. Procedural variations in enzymatic diges-
tion, buffer selection, and centrifugation can all have
significant impacts on MSC yields.41 Despite this,
analysis of our results indicates that in addition to
higher levels of cells, adipose tissue maintains decidedly
greater consistency in stem cell density as compared
with alternative primary harvest sites. We believe this
consistency results from both the more homogeneous
nature of the tissue as compared with bone marrow
and, paradoxically, the more procedurally involved
manner of its harvest. The complex nature of MSC
harvest from adipose tissue necessitates following or
adapting proven procedures. Consequently, large me-
chanical differences in harvesting which lead to varia-
tions in yield, such as marrow aspiration technique,
were largely eliminated. Concurrently, smaller differ-
ences were increased through the introduction of var-
iations in enzyme and buffer concentrations.
Bone marrowederived MSC yields showed signifi-

cant variation likely because of differences in both the
anatomic harvest site and patient demographic char-
acteristics. Studies by Pierini et al.34 and de Girolamo
et al.6 showed up to a 2-fold differences in yields be-
tween various marrow sites in the body. In particular,
Pierini et al. concluded that the posterior iliac crest was
the optimal harvest site for MSCs, above both the
anterior iliac crest and the subchondral knee. Further-
more, evidence has shown that the use of the iliac crest
as a harvest site, a common site in our review, pre-
disposes harvest samples to significant dilution by
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peripheral blood,37 resulting in both depressed values
and increased variation in harvest yields. In addition,
increased age, particularly among women, has been
shown to have a significant impact on bone
marrowederived MSC harvest yields, with numerous
studies having shown bone marrowederived MSC
yields to decrease with age.42,43 Because selected
studies used a diverse range of donor ages, decreased
yields compared with other studies are likely affected by
increasing donor age and should be considered by
physicians planning future MSC harvests. Finally, these
data on harvest numbers of MSCs by anatomic site and
tissue type offer no predictive information about the
cellular activity of the individual MSCs. Differences in
stem cell biology between and among these tissue
sources must be evaluated in the laboratory and clinic
as we proceed with this new field of biology.

Limitations
Limitations to our study primarily concerned issues of

tissue comparability and scope of the initial search. As
mentioned previously, conversion to common units
(milliliters) for direct comparison of tissues was
dependent on the existence of accepted values for tissue
density. Consequently, umbilical cord stromal tissues,
as well as certain reported bone marrow values, could
not be converted to common units for direct
comparison.
Initial development of the search criteria excluded

articles that had not been translated into English. In
addition, articles that were not accessible through the
PubMed or Medline databases were excluded from our
initial search. Although bibliographies of initially
selected articles were evaluated for relevant publica-
tions and data, this limitation must be acknowledged.

Conclusions
Large variations in cell harvest yields remain for each

major tissue site for MSCs as reported in the literature
to date. Reviewed research supports the understanding
that placental tissue provides the highest concentration
of cells whereas adipose tissue offers the highest levels
of autologous cells. Consequently, considerations must
be made regarding the non-autologous nature of um-
bilical cordederived stem cells, as well as the increased
post-harvest processing required for adipose-derived
stem cells, for the purposes of research and clinical
application.
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