Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance

Around 5 million annual births in EU and 131 million worldwide give a unique opportunity to collect lifesaving Wharton’s jelly derived mesenchymal stem cells (WJ-MSC). Evidences that these cells possess therapeutic properties are constantly accumulating. Collection ofWJ-MSC is done at the time of delivery and it is easy and devoid of side effects associated with collection of adult stem cells from bone marrow or adipose tissue. Likewise, their rate of proliferation, immune privileged status, lack of ethical concerns, nontumorigenic properties make them ideal for both autologous and allogeneic use in regenerative medicine applications. This review provides an outline of the recent findings related to WJ-MSC therapeutic effects and possible advantage they possess over MSC from other sources. Results of first clinical trials conducted to treat immune disorders are highlighted.

Introduction: Interest in mesenchymal stemcells has been kindled in 1960s as the result of Friedenstein’s observations who reported that the bone marrow stroma can generate bone [1]. It was later shown that bone marrow stromal cells have chondrogenic and adipogenic properties and a high ability for self renewal [2]. Even though there is debate on the technical name (mesenchymal or multipotent stem cells), there is an agreement to the acronym “MSC”. Since their original description, presence ofMSC has been proven in many adult and embryonic tissues such as adipose tissue [3], muscle [4], peripheral blood [5], lung [6], heart [7], corneal stroma [8], dental pulp [9], placenta [10], endometrium [11], amniotic membrane [12], and Wharton’s jelly [13]. MSC have the capability to differentiate into wide range of specialized cells of mesodermal origin: bone cells, cartilage, fat, cardiomyocytes, muscle fibers, renal tubular cells, and break germ layer commitment and differentiate into cells of ectodermal origin, for example, neurons, and endodermal origin, such as hepatocytes and pancreatic islets cells.

Due to the above properties, MSC are considered as a new emerging treatment option and therapeutic agent in regenerative medicine. MSC therapeutic potential can be executed by direct replacement of injured tissue cells or by paracrine effect on surrounding environment, indirectly supporting revascularisation, protecting tissue from stress-induced apoptosis, and appropriately modulating inflammatory reaction. Results of MSC based cell therapies are very promising in various clinical fields, based on in vitro and in vivo research results and more than 400 clinical trials registered.